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ADVANCING THE SURVEILLANCE CAPABILITIES OF THE AIR 
FORCE'S LARGE-APERATURE TELESCOPES 

 
AFOSR Award: FA9550-09-1-0216 

 
Executive Summary 
 

The Air Force’s 3-meter class AEOS and Starfire telescopes play a critical role in the 
detection and imaging of objects in the near-Earth environment for space situational 
awareness (SSA). Ideally these assets provide horizon-to-horizon surveillance of the sky, 
twenty-four hours a day, seven days a week. In practice, the amount of sky over which 
we can obtain high-resolution images of space objects is limited to regions where the 
combination of adaptive optics (AO) compensation and numerical image restoration are 
effective. For current AO systems and image processing techniques this requires benign 
to moderate turbulence conditions which results in a serious reduction in both the area of 
sky that can be monitored and the time it can be monitored. Moreover, it adversely 
impacts our capability for surveillance of some types of satellites (e.g., low-orbit, sun-
synchronous satellites). 
We demonstrate that by improving the synergy between the data acquisition and 
processing steps, and leveraging the information on the temporal behavior of the 
atmosphere that is encoded in the AO wave front sensor data, we can achieve high-
resolution imaging through much stronger atmospheric turbulence than is possible with 
current imaging systems.  The proposed approach captures images using a range of 
aperture sizes and then uses a bootstrap restoration process that starts with the smallest 
aperture data. This technique provides a trajectory through the parameter hyperspace in 
the restoration that is less susceptible to entrapment in local minima than is encountered 
with the traditional approach of restoring single aperture data.  Implementing the 
proposed approach has the potential to provide a six-fold increase in the spatial and 
temporal coverage of the sky: a significant advance for SSA. 
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1. Introduction 
The Air Force’s 3-meter class AEOS and Starfire telescopes in Hawaii and New Mexico, 
respectively, play an important role in monitoring the near space environment for space 
situational awareness (SSA). Ideally these assets can be used for horizon-to-horizon 
surveillance of the sky, twenty-four hours a day, seven days a week. In practice the 
amount of sky over which we can obtain high-resolution images of space objects is 
limited to regions where the combination of adaptive optics (AO) compensation and 
numerical image restoration are effective. For current AO systems and image processing 
techniques this requires the turbulence conditions to be better than D/r0 ≈ 20 (D is the 
diameter of the telescope aperture and r0 is the spatial coherence length of the 
atmosphere).  
At night under median seeing conditions on Haleakala, a performance ceiling of D/r0=20 
is sufficient to observe down to a zenith angle of 60°, allowing access to half the sky (see 
Fig. 1). However, under median daytime conditions [1], the same imaging system 
(including AO + image processing) is only able to operate down to a zenith angle of 25°, 
covering just 10% of the sky. This lack of coverage close to the horizon and during the 
daytime represents a serious limitation for SSA1. 

 

Figure 1. The circular panels show the fractional area of sky around the zenith that can be addressed 
by imaging systems that can reach values of D/r0 of 20, 40 and 70 as a shaded disk within a circle 
representing the horizon. The maximum workable zenith angle z is noted. The semicircular panels 
show the same information in a side view. We assume median values of r0 of 10.2 cm and 14.6 cm for 
daytime and nighttime respectively [1], and a central imaging wavelength of 850 nm. 

On the other hand, if the imaging system could handle turbulence up to D/r0=40 it would 
open up 72% of the sky, with operation during the day possible down to 74° zenith angle. 
To get to 90% sky coverage requires operation to D/r0=70, roughly 85° zenith angle 
either day or night.   
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The situation for the Starfire telescope is worse due to the generally worse turbulence conditions at the 
New Mexico site. 

D/r0	  vs.	  elevation	  
angle	  
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The focus of our research is to advance the surveillance capabilities of the Air Force’s 
large aperture telescopes by developing methods that will enable high-resolution imagery 
to be obtained through turbulence conditions with D/r0 >> 20, thus dramatically 
increasing both the area of the sky and the amount of time we can monitor the near space 
environment. 
1.1 Correction of wave front aberrations caused by atmospheric turbulence 

To obtain the full resolution performance of an imaging system when viewing through 
the Earth’s atmosphere requires careful mitigation of the turbulence-induced aberration in 
the observed wave front. This is typically achieved through the use of adaptive optics 
followed by post-detection numerical processing. The latter is required to correct for 
residual wave front distortions that were not compensated by the AO system. Because the 
details of the remaining image blur are often not well known, the processing technique of 
choice is multi-frame blind deconvolution (MFBD, [2,3]). 
The maximum improvement in resolution achieved by an AO system, as measured by the 
Strehl ratio (the ratio of the maximum intensity in a point source image to that in its 
theoretical diffraction-limited image), occurs for D/r0 = 2.3 (qN)½ [4]. Here q is a 
measure of the AO system’s compensation efficiency and N is the number of actuators in 
the system. When D/r0 increases above ~2.3 (qN)½ the performance of the AO system 
begins to deteriorate. For an AO system equipped with a large-format deformable mirror 
(N~1,000; q~0.05 [4]) the deterioration starts at D/r0~16.  

The performance of MFBD also depends on the strength of the turbulence and is best at 
low levels of turbulence (small D/r0 values). This is because the algorithm is susceptible 
to entrapment in local minima during the iterative optimization process [5] and the 
number of local minima rapidly increases as the number of speckles in the atmospheric 
point spread function (Nspeckles~ (D/r0)2) increases. From our experience MFBD loses 
effectiveness for D/r0>20.  

The overall performance of the AO-numerical processing combination is such that 
imagery with diffraction-limited resolution can be produced for observations acquired 
through turbulence strengths of up to D/r0 ≈ 15, after this the resolution starts to degrade. 
There are two ways to extend the diffraction-limited performance beyond this. The first is 
to improve the performance of the AO compensation by increasing N and/or q. The 
second is to improve the performance of the restoration process.  

Unfortunately, a large improvement in AO performance is hindered by the practicality 
that q tends to decrease as N increases [4]. There are also signal-to-noise considerations 
in the wave front sensing component of AO when increasing the density of the micro-lens 
array in the wave front sensor (WFS).  

This leaves the second approach. Here we need to develop techniques to avoid local 
minima during the restoration process and methods to improve our estimation of the 
atmospheric wave front. As we will see, these both require, in part, that we improve the 
synergy between the image acquisition and processing steps: this is in stark contrast to 
the current approach where the two steps are essentially independent of each other. 
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2. Incorporating wave front sensor data in the restoration process 
A first step toward improving the performance of the restoration process is to incorporate 
wave front sensor (WFS) data that were taken simultaneously with the image data, in to 
the restoration process [6]. These additional data, that contain information on the residual 
wave front error, provide a strong physical constraint on the parameter values for the 
wave front phases in the restoration. However, the leverage provided by this constraint 
quickly decreases once r0 falls below the WFS sampling distance. This is a potentially 
serious limitation for observing through strong turbulence as the high-spatial frequencies 
of the wave-front phase become increasingly influential on the morphology of the point 
spread function (PSF) as r0 decreases, and thus ever more important to estimate (see Fig. 
2). Fortunately, there is some salvation available if we model the temporal correlations in 
the atmospheric wave front. 

 

 
Figure 2. The top row shows a Kolmogorov phase screen with different scaling and filtering.  The screen 
in the top left represents D/r0 ~ 3 conditions and the filtered version of this screen (convolved with a 
Gaussian function with FWHM ~3 pixels) is shown next to it on the right. The next panel (top, center, 
right) is the D/r0~3 phase screen scaled to represent D/r0~ 40 conditions. The far right panel is the D/r0~40 
phase screen filtered in the same way as for the D/r0~3 data.  The bottom row shows the corresponding 
PSFs for the phase screens that are above. It is clear that the sensitivity of the morphology of the PSF to the 
high-spatial frequencies of the wave front phase dramatically increases as the level of turbulence increases. 
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2.1 Modeling the atmospheric turbulence using the Taylor frozen flow hypothesis 
The Taylor frozen flow hypothesis (FFH) assumes that, over short time scales, 
atmospheric turbulence can be modeled by a series of independent static layers moving 
across the telescope aperture, each layer moving with the prevailing wind at the altitude 
of the layer.  
The relevant time scale for a single layer is given by the time taken for the wind to carry 
the (frozen) turbulence a distance r0, i.e., τ0 ~ r0/v, where v is the wind velocity. This 
“coherence time” therefore varies according to site and atmospheric turbulence 
conditions. For multiple layers v is replaced with <v>/0.3, where <v> is the mean 
velocity over the layers weighted by the CN

2 profiles [7]. The validity of the FFH has 
been verified by Schöck & Spiller [8] for observations at the Starfire Optical Range in 
New Mexico. They observed, using a cross-correlation analysis of wave-front sensor 
(WFS) data taken at 0.74 µm with low-level wind velocities of ~ 4 m/s and turbulence 
with r0≈4cm, that use of the FFH is accurate for time scales of ~20 ms or less: the 
accuracy degrading with increasing time such that by ~100 ms only 50% of the temporal 
evolution can be described by the FFH. 
Figure 3 shows that for the period the turbulence can be described by a frozen flow, a 
time series of wave front phase gradient data from the Shack-Hartmann WFS contains 
information on spatial scales finer than the separation between detectors in the WFS [20, 
24]. 

                   
To use the FFH requires that we know the wind velocities of all significant layers of 
turbulence in the atmosphere. These are computed from an autocorrelation of the WFS 
measurements, which are captured at a cadence that substantially exceeds the Greenwood 
frequency and therefore capture the effects of frame-to-frame coherence in the wave 
front. The measured wave-front slopes are stacked into a data cube and the 3D spatio-
temporal autocorrelation of the cube is calculated. Consider the effect of a wave front 
characterized by a single frozen layer moving across the pupil. The strongest signal will 

Frame 
1 

Frame 
2 

Frame 
3 

Frame 
4 

Frame 5 Frame 6 

Composite grid 

Figure 3. The images in the top row show how a Shack-Hartmann array samples the underlying frozen 
phase screen as it moves across the telescope aperture. The image on the bottom shows the effective 
sampling of the phase by the time series data in the top row.   
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occur at the center of the autocorrelation cube, at zero spatial and temporal lags. But as 
time progresses, and the wave front advances across the aperture, the strongest 
correlation signal will be seen at a spatial lag equal to the elapsed time multiplied by the 
wind vector. The signature of a frozen layer is thus a line of strong signal projecting from 
the origin of the autocorrelation cube whose direction corresponds to the direction and 
speed of the corresponding wind, illustrated in Figure 4. The strength of the correlation 
signal is directly related to the strength of turbulence in the layer, and the rate of decay 
with temporal lag indicates the degree to which the layer is not in fact well represented as 
a frozen flow. 

Under the FFH we can model the total wave-front phase distortions in the pupil,	  Φ(x,t), 
as	  
     Φ(x,t+Δt) = Σi αi(x-‐viΔt,t),	   	   	   	   (1)	   
	  

where αi	  =	  φi	  ⊗	  ηi are the phase delays caused by layer i at time t, vi is the velocity of this 
layer,	  φ are the model parameters,	  η	  is a Gaussian kernel that enforces spatial correlation 
in the phases, ⊗	  denotes convolution and	  Δt	   is the time between WFS frames. We can 
reconstruct the phase by finding the	  values	  of	  φ	  that	  minimize the cost function	  
	  

εwfs=	  Σk Σx	  M{|∇xΦ	  –	  Sx|2	  +	  |∇yΦ	  –	  Sy|2}.	   	   	   (2)	  
	  

Here Sx , and Sy are the measured x and y gradients of the phase for time index k, ∇ is the 
gradient operator, and M is a binary mask representing the location of each sub-aperture 
in the Shack-Hartmann sensor. Figure 5 shows the improvement in the reconstructed 
phase when using this approach, which accounts for the temporal correlations in the wave 
front, over that where the temporal correlations in the wave front are ignored. 

This higher-fidelity wave front estimate can be leveraged in the numerical processing of 
the corresponding focal plane imagery. 
	  
2.2 Deconvolution from Wave Front Sensing (DWFS) 
 

DFWS is an image-reconstruction technique that is normally thought of as providing 
a low-cost, post-detection, alternative to adaptive optics for compensating for the image 
degradation due to atmospheric turbulence [9,10].  However, it is also a powerful tool for 
use with short-exposure AO-compensated data. DWFS requires the simultaneous 
recording of short-exposure, focal plane, images and WFS data. 

Figure 4. Consecutive time-lag slices from the 3D autocorrelation of real Shack-Hartmann WFS 
data obtained at the 3.6 AEOS telescope on Maui. Two frozen layers, noted by the arrows in 
frame 4, are detected as spots of high signal projecting from the origin. 

Time lag 
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Figure 5. The left panel shows the reconstructed phase based on a single frame of Shack-Hartmann WFS 
data. The right panel shows the reconstruction based on a series of Shack-Hartmann WFS data and the use 
of the FFH. The improvement in the estimation of the high-spatial frequencies of the wave front is clear. 

Traditionally, the WFS measurements are used to estimate the point-spread functions for 
the observations. These PSFs are then used with the ensemble of short-exposure images 
to obtain an estimate of the object intensity distribution through deconvolution. This 
approach for the object estimation, however, does not take into account any errors in the 
wave-front phase reconstruction process. An alternative approach, which overcomes this 
limitation, is to perform a joint estimation of the object and the wave fronts [6,11]. 

We adopt the isoplanatic, incoherent, imaging model and model the observed focal plane 
data, g(x), as a convolution between the object, f(x), and the atmospheric point-spread 
function h(x). That is, 

 
    𝑔  (x) = (𝑓  ⊗ ℎ)x .     (3) 
 
Here the “hat” symbol denotes an estimated quantity (as opposed to a measured quantity). 
We model the point-spread functions and object using 
  
   ℎk(x) = (1/J) Σj

 |FFT-1{Pkj(u) exp(iΦkj(u))}|2   (4) 
 
and 
 
  𝑓(x) ≡ FFT-1{Σk Gk(u)𝐻k

*(u)/[Σk 𝐻k(u)⋅]𝐻k
*(u) + γ]},  (5) 

 
respectively. Here P(u) are the wave-front amplitudes in the pupil (assumed to be unity), 
FFT-1{} is the inverse Fourier transform operator, g is a regularization parameter, * 
denotes complex conjugate, h(x)⇔H(u), g(x)⇔G(u) are Fourier transform pairs, and γ is 
a regularization constant.  The summation over j represents the scenario where the WFS 
data are accumulated at a higher frame rate than the focal plane data (i.e. there are J WFS 
frames for each focal plane frame). We note that without the FFH, Eqn. (1) is replaced by 
Φ(x,t)=α(x,t) and the phases at different times are treated as independent realizations of 
the atmosphere. 
 
We estimate the values of φ by minimizing the error metric  
 

εTotal = ε + Σj εj
wfs,      (6) 
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using a partial conjugate gradient approach [11], where 
 
   ε = Σk Σx |𝑔k(x) – 𝑔k(x)|2     (7) 
 
and 𝑔k(x) are the observed focal plane data. We note that minimization using just the 
error metric in Eqn. (7) constitutes traditional MFBD: the addition of the WFS metric 
changes the situation to “myopic” deconvolution [11]. 
 
Small deviations from the frozen flow behavior, for example due to turbulent boiling, can 
be accounted for in practice by performing a second run of the DFWS algorithm. In this 
run each frame is treated as an independent realization of the atmosphere: this allows for 
the necessary small updates to the phase estimates. We also note that data sets that cover 
periods much longer than the atmospheric coherence time can be modeled using a series 
of overlapping frozen flow screens.  
	  
Lastly, use of the FFM has the added benefit of requiring the estimation of significantly 
fewer parameters than a description where there is no frozen flow behavior because 
successive frames of data see substantially the same wave front. This contributes to 
reducing the number of local minima in the optimization. 
 
2.3 Simulations 
 
We tested our DFWS algorithm using numerical simulations of astronomical 
observations made with the 3.6m AEOS telescope on Mount Haleakala and zero read 
noise detectors. Site surveys have shown that the atmosphere above Mount Haleakala can 
be reasonably well approximated by two turbulent layers: one at ground level with a 
velocity of ~5 m/s, the other at a height of 11km with a velocity of  ~29 m/s [12].  The 
details of the simulations are given in the appendix. 
 
We have simulated observations of the Hubble Space Telescope (mv=2.3) taken using a 
10 arcsec x 10 arcsec field-of-view (FOV) without AO compensation. 
With this FOV and the site characteristics noted above, the diameter of the meta-pupil at 
11 km, relative to the telescope aperture – given by (1+ 2θzi/D –zi/R), where θ is the 
FOV angle, zi is the height of the ith turbulent layer and R is the height of the target (569 
km) - is only 12% larger than the telescope aperture. In addition, the relative footprint in 
this meta-pupil of each point in the FOV - given by (1 – zi/R) - is only 2% smaller than 
the telescope aperture. That is, anisoplanatic effects will be small and we can still obtain 
a reasonable modeling of the phases using Eqn. (1) without having to resort to geometric 
ray tracing or Fresnel propagation methods. 
 
2.4 Results 
 
Two experiments were performed for simulated observations acquired through strong 
turbulence conditions (D/r0~50). In the first experiment, the FFH is used to model the 
wave-front phases in two layers. In the second, temporal correlations between frames are 
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ignored and the wave-front phase in each frame is treated as an independent realization of 
the atmosphere. In both cases, spatial correlations are enforced in the estimated phases 
using η=4 pixels (i.e. the FWHM of the Gaussian smoothing kernel ~ sub-aperture 
spacing), and the minimization is stopped when the estimated phases show no evidence 
of further change. The initial estimates for the wave front phases in both cases, is zero. 
 
Figure 6 shows that use of the FFH provides a restored image with a spatial resolution 
that is far superior to the restoration without inclusion of temporal correlations in the 
wave-front phase. In the latter the restoration quality is so poor that no meaningful 
information can be obtained on the target object. 
 

 
Figure 6. Left: Diffraction-limited image of the truth object (Hubble Space Telescope). 
Middle Left: Image after convolution of truth object with truth PSF and addition of 
photon noise. Middle Right: Restored image from 40 frames (80 msec) of focal plane and 
WFS data when using the FFH. Right: Restored image without use of the FFH. All 
images are shown with linear scaling. 

 
We also looked at a case of extreme turbulence (D/r0~100). Even here, the additional 
high-frequency information on the wave front that can be recovered using the FFH is 
sufficient to extract some information on the target from data that would normally be 
discarded (see Fig. 7). 
 

                                  
 

Figure 7. Left: Simulated image of the Hubble Space Telescope observed through strong turbulence (D/r0~100). The 
simulations ignored variations in the wave front amplitudes, an approximation that is not valid for observations at low 
elevation angles. Right: The restored image produced using the technique of deconvolution from wave-front sensing 
and the wave fronts estimated using simultaneously acquired Shack-Hartmann wave-front sensor data and known 
information on the temporal behavior of the atmospheric turbulence.  
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2.5 Discussion 

The FFH allows for an effective sub-sampling of the wave-front phase that facilitates the 
reconstruction of the high-spatial frequencies in the phase that are not sampled by the 
sub-apertures in the WFS. This property allows us to extend the range of imaging 
conditions over which DFWS can be used to obtain high-quality restorations: basically to 
conditions where r0 is less than the sub-aperture spacing (e.g., shorter wavelengths, strong 
turbulence), a regime where AO compensation loses its effectiveness.  

3. Avoiding entrapment in local minima during the restoration process	  
 
As noted in §1.1, MFBD algorithms are susceptible to entrapment in local minima during 
the iterative optimization process [5] thus producing a sub-optimal restoration. A 
common gambit to mitigate this problem is to enforce known physical and mathematical 
constraints onto the solution (e.g., positivity of the object brightness). Unfortunately, this 
only works for imagery obtained through relatively benign turbulence. As the complexity 
of the PSFs increases with increasing turbulence, the number of local minima also 
increases and entrapment still occurs despite the additional constraints.  
Some extension of the turbulence strength at which entrapment becomes inevitable can 
be obtained by using high-quality initial estimates for the object and PSFs to position the 
algorithm well in parameter hyperspace (i.e. close to the global minimum). However, for 
imaging scenarios where WFS data are not available, high-quality initial object and PSF 
estimates are generally hard to come by. The solution to this problem lies in the fact that 
MFBD typically performs well at low turbulence.  

3.1 Aperture diversity and MFBD 
In our experience MFBD algorithms struggle when D/r0>20. To tackle restorations in this 
regime, we seek a strategy in which we first solve a problem with small D/r0 and then use 
the result to seed a problem with more severe aberration. By successively applying this 
approach to problems of larger and larger D/r0, we may bootstrap ourselves through the 
parameter hyperspace avoiding local minima along the way. In this way, we can hope to 
compute a successful restoration at the diffraction-limited resolution of the full aperture 
even for strong turbulence conditions. This hierarchical approach is similar to objective 
function smoothing techniques used in numerical optimization [13] to avoid local 
minima, but instead of explicitly modifying the objective function by, for example, 
Gaussian smoothing, the smoothing is done implicitly with smaller D/r0 values. What is 
needed is a way to acquire the image data such that the restoration can be carried out as a 
number of separate MFBD problems spanning a range of D/r0 values from very small to 
that for the full aperture. 
A straightforward way to do this is to use aperture diversity imaging [14] where the 
diversity is in the aperture size. The simplest implementation of the strategy is to record 
images of the same object simultaneously with a number of telescopes of different 
aperture size. If the smallest is arranged to have D/r0<10, a straightforward MFBD 
analysis will yield a good estimate of the object at low spatial frequencies (that is, the 
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object estimate is of low resolution) that may be used to seed restorations from the next 
largest aperture, and so on. The PSFs of the different telescopes will share nothing in 
common, even if the image sequences are carefully synchronized, because the 
atmospheric aberrations will be uncorrelated. Nevertheless, we can still apply a strong 
constraint on the PSFs for the larger telescopes. In the ratio of the spectra of observations 
from two telescopes, the common object spectrum cancels out, leaving the ratio of the 
PSF spectra [15]. With the PSF estimates for the smaller telescope derived from MFBD, 
a good starting estimate may also be found for the PSFs from the larger telescope. 

A more powerful approach to aperture diversity is to partition a single large telescope 
aperture into annuli and to form separate images through each annulus [16]. The outer 
diameter of the smallest annulus is set so that D/r0 is low; again, MFBD of the data 
provides a high fidelity, low-resolution estimate of the object. Higher resolution estimates 
are then successively calculated as before, by introducing data from the larger annuli. 
Better performance from this arrangement than from the physically separated telescopes 
can be obtained, as we describe below, by adopting a restoration algorithm that estimates 
the wave-front amplitude and phase in the pupil as well as the object, and exploits the 
characteristic of atmospheric turbulence that over short time scales it is well described by 
the Taylor frozen flow model.  

3.1.1 Wave front sensing using multi-aperture phase retrieval 
In §2 we showed how modeling the temporal correlations in the wave front, using the 
frozen flow approximation, facilitated increased sampling of the wave front over that 
afforded by the wave front sensor sampling. This increased sampling is in the direction of 
the wind vectors for the different turbulent layers. However, to provide the best possible 
estimate of the wave front it would be best to have increased sampling in all directions. 
This can be achieved by operating the Shack-Hartmann WFS in the same way as is used 
in solar adaptive optics [23]. 

The Shack-Hartmann (SH) WFS divides the telescope aperture into a set of contiguous 
square sub-apertures. It can therefore be regarded as another instance of aperture 
diversity. But we can extend the information recoverable from this arrangement by 
making a critically sampled image of the full field through each sub-aperture, rather than 
the hugely under-sampled (point-source like) images typically made by a SH WFS. We 
will refer to the former as an imaging SH WFS.  

The sub-apertures in an imaging SH WFS are sized to yield D/r0 values less than 10 so 
that MFBD of the images from a sub-aperture can provide a good solution [17,18]. Now, 
the data from a single sub-aperture provide information on both the wave front in that 
sub-aperture (beyond simple tip-tilt) and the lowest spatial frequencies of the object. The 
reconstructed wave fronts from all the sub-apertures taken together provide an estimate of 
the wave front across the full telescope’s pupil. This estimate will have the necessary 
high-spatial frequency information for the restoration of images acquired at high 
turbulence strengths, with the information now no longer constrained to lie along the 
frozen flow wind directions. 
We still take advantage of the frozen flow behavior of the atmosphere, which now 
provides an extra benefit beyond the recovery of high-spatial frequency wave-front 
information. Critically, it allows us to estimate the wave-front phases unambiguously. As 
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is well known, the wave front cannot be uniquely determined from a single image 
because an overall sign change in even modes of the aberration leaves the PSF 
unchanged. Typically, an approach such as phase diversity is required to establish the 
sign. But the propagation of the phase across the pupil between successive images in 
increments of a fraction of the sub-aperture size effectively introduces the needed 
diversity, and the wave-front solution becomes unique. 

3.1.2 Combining approaches 
The approach we have adopted for image restoration at high D/r0 combines the bootstrap 
approach to the restoration process, starting with low D/r0 data and progressively adding 
in larger D/r0 data, with the multi-aperture phase retrieval technique for measuring the 
high-spatial frequencies of the wave front. The optical implementation is sketched in 
Figure 8. Here the light beam is split into two channels, each of which is relayed to a 
pupil where the light is segmented: one channel with a grid of small rectangular-like sub-
apertures, the other in concentric annuli. The light from each sub-aperture is imaged onto 
separate detectors. Only the images from the largest annular sub-aperture contain spatial 
frequencies out to the diffraction limit of the telescope. All the others yield imagery with 
lower spatial frequency content. We therefore refer to the channel with the annular sub-
apertures as the “high-resolution” channel, and the other channel as the “low-resolution” 
channel. In summary, in this aperture diverse setup the input light that would normally be 
collected by a single aperture is now shared over a large number of apertures designed to 

yield image data with a range of D/r0 values. 

3.2 Simulated data 
To test our proposed aperture diversity technique we use numerical simulations of 
observations of the Hubble Space Telescope (HST) taken through atmospheric turbulence 
with r0~9 cm with a 3.6 m telescope. At D/r0=40, the simulated data are therefore well 
beyond the regime of turbulence strength that classic MFBD techniques can address. We 
note that r0~9 cm is commensurate with the mean daytime seeing at Mount Haleakala for 
an observing wavelength of 850 nm [19]. The data consist of images from 24 apertures, 

Figure 8. This cartoon shows the proposed aperture diversity instrument. The focal plane array 
associated with the micro-lens array constitutes the “low-resolution” channel; the focal plane 
arrays associated with the annular sub-apertures constitute the “high resolution” channel.  
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each of size ~0.6 m in the low-resolution channel and 2 annular apertures with diameters 
of 1.6 m and 3.6 m in the high-resolution channel. The target is assumed to have a 
brightness of mv=+2, which corresponds to 1.1×107 photons/image for the full 3.6 m 
aperture for a 2 ms integration [20]. Half the light is sent into each channel, which results 
in approximately 40% of all the input light going to the large annulus. Figure 9 shows 

example images for the different apertures. 
 
We use a two-layer, frozen flow description of the atmosphere and a Kolmogorov model 
to generate the PSFs for the different apertures. The wind velocity vectors are 
commensurate with values observed at Mt Haleakala (~5 m/s for the lower layer and ~ 30 
m/s for the upper layer [12]). The resulting PSFs are convolved with a numerical model 
of the HST to provide noise-free models of the observed images. Poisson noise is then 
added to these images to simulate the observed data. Since it is not fundamental, we do 
not include read noise from the detectors, assuming that devices such as noiseless 
EMCCDs will be used. 
We generated a time series of 16 simulated speckle observations, each comprising 26 
channels, with exposure times less than the coherence time of the atmosphere, as would 
be made with the proposed aperture diversity system. From the same atmospheric 
realizations we also generated simulated images as would be made using a single 3.6 m 
telescope. 

3.3 Multi-aperture MFBD algorithm 
We use a modified version of the DWFS algorithm described in §2.2.  

Figure 9. Top row: Sample data frames from numerical simulations of observations of the 
Hubble Space Telescope taken with different apertures, shown in the bottom row, through 
atmospheric turbulence with r0~9 cm. Left to right: 3.6 m full aperture (with 0.75 m central 
obscuration), 3.6 m diameter annulus (1.6 m inner diameter), 1.6 m annulus (0.75 m inner 
diameter), a central low-resolution sub-aperture (~0.6 m size). The data frames are displayed 
on linear scales between each image’s minimum and maximum values. The total number of 
photons in the 26 images from the multi-aperture data set at each time is equal to the number 
of photons in the single image from the 3.6 m filled aperture. 
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The first modification is that we describe the object intensity distribution using the 
parameterization f̂ (x) =ψ 2 (x) . The real function ψ(x)  is described using a 2-D pixel basis 
set. The second modification is that the data model for each channel, denoted by l, is 
given by 

 
     

(8) 

where the scalar al  accounts for the different photon fluxes in each channel due to the 
different sizes of the apertures. The corresponding update to the convolution error metric 
is 

ε = gl,k (x)− ĝl,k (x)x∑k∑
2

l∑      
(9) 

For an aperture diverse (AD) observation the number of imaging channels is equal to the 
number of sub-apertures in the low-resolution channel plus the number of annular 
partitions of the full aperture. For traditional single aperture observations the number of 
imaging channels is equal to 1. The set of model parameters now includes and . 
For multi-telescope data, where the frozen flow approximation cannot be used to connect 
the separate apertures, we leverage the information contained in the observed spectral 
ratios. In the case of noise-free data, the spectral ratio (the ratio of the Fourier spectra of 
two data frames ) is independent of the object spectrum  (assuming the 
object is the same in each frame [15]). That is, 
 
    (10) 

for where is the optical transfer function (OTF), are the 
additive noise components for the and  frames and the PSFs are assumed to be 
spatially invariant and incoherent. 
If the OTF is well known for one of the frames, then by using the observed spectral ratios 
we immediately have good estimates of the OTFs of the other data frames. In the case of 
spectral ratios for data obtained with two-channels with different cut-off frequencies, the 
spectral ratios are valid over the common frequency range. 
This constraint on the PSFs is enforced using the consistency metric 

                       εSR = M l !l ,k !k (u) χ l !l ,k !k (u)
2

G j (u)
2

j∑u∑k , !k∑l , !l∑     (11) 

where 

                                (12) 

Here is a binary mask equal to 1 at a given spatial frequency 
when the SNR for the and  frames in the and channels is greater than some chosen 
threshold, which we arbitrarily set to 100. 

ĝl,k (x) = αl f̂!x∑ (x− !x )ĥl,k ( !x )

ψ(x) Φ(u)

  Gk (u) / Gk ' (u)   F(u)

  
Gk (u) / Gk ' (u) = F(u)Hk (u) + Nk (u)!" #$ / F(u)Hk ' (u) + Nk ' (u)!" #$ → Hk (u) / Hk ' (u)

( ) ( ) 0k kN u N uʹ′= = ˆ ( )kH u ( ), ( )k kN u N uʹ′
thk thkʹ′

χ l !l ,k !k =
G !l , !k (u)Ĥ l ,k (u)−Gl ,k (u)Ĥ !l , !k (u)

G !l , !k (u)G !l ,k (u)
.

M l !l ,k !k (u) =M l ,k (u)M !l , !k (u)

k k ʹ′ l lʹ′
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At each step in the bootstrap process where the next higher resolution data are introduced 
into the MFBD problem, the low-resolution wave-front phases are fixed and the 
consistency metric used to update the wave fronts on the higher resolution channel. Once 
the value of the metric has plateaued, the minimization is stopped, and restarted as an 
MFBD problem using the previous lower resolution object and PSF estimates with the 
new wave-front estimates in the higher resolution channel. This update of the high-
resolution wave fronts encodes the position of the target, such that the lower resolution 
object can be used as a start for this new MFBD problem.  
3.4 Results 

The effectiveness of the bootstrap process is highlighted in Figure 10, which shows the 
error in the object estimate as a function of spatial frequency. The root-mean-square error 
(RMSE) is the root-mean-square difference between the true and estimated object power 
spectra, azimuthally averaged in the Fourier plane, over 20 random trials. Figure 10a 
shows the error after standard MFBD processing of speckle data sets collected with 
telescopes of 1m, 1.6m and 3.6m diameter. For this experiment, the seeing was 
characterized by r0 = 15 cm. It is noteworthy that the best estimates of the lowest spatial 
frequencies are obtained from the smallest aperture even though it sees nearly ten times 
less light than the largest aperture. Figure 10b shows the result of processing the three 
data sets combined. If all three are processed simultaneously, then the result is very 
similar to the result for the 3.6 m aperture alone (Figure 10a): the addition of the data 
from the smaller telescopes does not help. In contrast, if the data sets are processed in 
series from smallest to largest aperture, following the bootstrap prescription, the RMSE is 
substantially reduced at all spatial frequencies. This highlights the fact that it is the local 
minimum problem that provides the main limitation to MFBD performance in poor 
seeing. 
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Figure 10. (a) The variation of the RMSE vs. spatial frequency based on a Monte Carlo of 20 
trials of 6-frame blind restorations for simulated data of a target of brightness mv=+2 as would 
be acquired with telescopes of 1 m (blue line), 1.6 m (magenta line) and 3.6 m (green line) 
observing through the same atmosphere (r0~15 cm). The lower the RMSE value, the better the 
quality of the restoration. (b) The RMSE of images recovered using the combined data from all 
three telescopes. The green line represents the simultaneous restoration of the combined data. 
The black line represents a bootstrap approach that starts with the smallest aperture data to 
achieve a good low-spatial frequency estimate, and then systematically updates the estimate 
through the additions of data from the larger apertures. 
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The results of processing the simulated aperture diverse and conventional speckle data 
described in §3.2, using our modified MFBD algorithm, are shown in Figure 11. The gain 
provided by using aperture diverse speckle observations over traditional speckle 
observations with a 3.6 m telescope is clear; the former provides an image that exhibits 
good high-spatial frequency information, whereas the latter provides an image with 
severely limited resolution and a high level of artifacts. 

 

Figure 11. Simulated images of HST. (a) Diffraction-limited image for a filled aperture 3.6 m 
telescope; (b) restoration of a data set from a filled aperture 3.6 m telescope only; (c) restoration of 
aperture diverse images from our proposed instrument. All images are displayed on the same 
linear scale. 

Three effects contribute to the improvement in the restoration with the aperture diversity 
arrangement compared to the single 3.6 m aperture. In the first place, by dividing the 
pupil into sub-apertures, the data are readily analyzed to estimate physical parameters 
that cannot be extracted from the filled aperture data; in particular, the mean slope of the 
wave front across each sub-aperture and the wind vectors associated with strong layers of 
turbulence. This information is used to solve a least squares problem to estimate the 
wave-front tilt across the full pupil for each layer. Knowing the global layer tilts, and by 
applying a Gaussian convolution kernel (with standard deviation of 1 pixel) to the wave 
front, we enforce continuity of the phase across the boundaries of the sub-apertures.  
Secondly, with knowledge of the wind vectors, we apply the FFH to model the flow of 
atmospheric phase errors over the contiguous apertures of both channels. This allows us 
to reduce the number of variables that must be solved in the problem by more than a 
factor of five. The variables may be viewed as axes of a Hilbert space within which an 
error hyper-surface is defined, whose global minimum we seek. The FFH enormously 
reduces the dimensionality of the search, and thereby the number of local minima into 
which the solution can irretrievably fall. The importance of this reduction is easily 
overlooked: it is analogous to reducing a 5-dimensional search to a 1-dimensional search. 

Finally, by initially working only with the low-resolution sub-apertures, the search is 
restricted to a hyper-plane within the Hilbert space, further reducing the dimensionality 
of the problem. Furthermore, since these apertures see phase errors with only low D/r0 
values, we choose the hyper-plane in such a way that the number of local minima is 
comparatively small. Only after the best point in the hyper-plane has been found do we 
then successively introduce the remaining regions of the full space, once again 
minimizing the dimensionality to be searched at any one time. 

a	   b	   c	  
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3.5 Separation of wave-front layers 

In addition to providing a high-resolution image of the target, the aperture diversity 
approach also yields high-fidelity wave-front estimates with minimal artifacts. 

Furthermore, the atmospheric turbulence layers are individually well estimated: the FFH 
applied to the annular partitioned data enables the phase contributions from the layers to 
be disentangled. Figure 12 shows an example result from the two-layer atmospheric 
model, where the height of the lower layer was set to zero, and the upper layer was set at 
5200 m to match the observed median value of θ0, the isoplanatic angle, at Mt. Haleakala 
[19]. 
This behavior suggests that the aperture diversity approach may be used to restore images 
with fields of view substantially larger than the isoplanatic angle. With knowledge of 
individual atmospheric layers and their ranges, PSFs may be constructed along widely 
separated lines of sight. The effectiveness of the approach is illustrated in Figure 13. Here 

Layer	  1	  

Layer	  2	  

Truth	   Estimate	  

Figure 12. Wave-front phase after removal of global tip/tilt: layer 1 (top row) layer 2 (bottom 
row). The true phases are in the left column; the estimated phases are in the right column. The 
images in each row are displayed on the same linear scale. 

Figure 13. Strehl ratio achieved with wave-front compensation using the estimates of Fig. 5. 
Upper curve: correction calculated from the two layer estimates separately along the line of sight. 
Lower curve: correction assumed to be the on-axis sum of the two estimated layers. 
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we have calculated the Strehl ratio for PSFs computed using two different methods of 
wave-front correction. Naïve correction using the integrated wave-front error on axis 
shows the classic anisoplanatic behavior, with reasonable on-axis Strehl ratio of 0.81 that 
drops off rapidly with field angle. By 2θ0, or about 6 arcsec, the Strehl ratio has dropped 
to a negligible value. By contrast, when the individual layer estimates are used to 
calculate a correction along a chosen line of sight, the performance is enormously 
improved out to field angles an order of magnitude larger than θ0. 
The proposed aperture diversity approach is instrumentally more complex than the phase 
diversity approach used by Thelan et al. [21], however, it may provide stronger leverage 
on the separation of the turbulent layers thus allowing for use in stronger turbulence 
conditions: further investigation is needed. We note that in both the phase diverse and 
aperture diverse cases we will have to solve the anisoplanatic restoration problem. 
3.6 Optical super-resolution 

In addition to providing an estimate of the observed wave fronts, the first pass through 
the bootstrap process, which uses only the low-resolution channel data, also provides a 
low spatial-frequency estimate of the target. Interestingly, we find that the recovered 
image is well estimated out to a spatial frequency cut-off that exceeds the diffraction limit 
of the sub-apertures. The level of this optical super-resolution, illustrated in Figure 14, is 
quite dramatic. 

Information theory has shown that optical super-resolution is possible because the 
number of degrees-of-freedom of an optical signal that an imaging system can transmit is 
constant. By having some a priori knowledge about the signal therefore, we can encode-
decode additional spatial frequency information onto the redundant degrees of freedom to 
increase spatial bandwidth while maintaining the total number of degrees of freedom 
[22]. One example of suitable a priori information, which is pertinent to the study here, is 
when the signal can be considered stationary with time. Here optical super-resolution is 
obtained through temporal multiplexing by encoding the image scene while forming a 
time series of low-resolution images, and then using the knowledge of the encoding to 
form a high-resolution image afterwards. We speculate that the “frozen flow” behavior of 
the atmosphere is providing an analogous spatial-temporal encoding in our 
atmospherically distorted imagery and that the FFM in the restoration process provides 
the decoding. This remains to be verified. 

Figure 14. Left: The mean diffraction-limited image for the apertures of the low-resolution 
channel. Right: The restored image from this channel alone using the frozen flow model for the 
atmosphere. 
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3.7 Discussion 
Using numerical simulations we have shown that the proposed aperture diversity 
approach is capable of separating the object signal from the atmospheric blur signal for 
imagery acquired through strong atmospheric turbulence (D/r0=40). By dividing the input 
signal across a number of different size apertures we dramatically improve the synergy 
between the data acquisition and processing steps. In particular, the resulting restoration 
algorithm becomes robust against entrapment in local minima, the bane of blind 
restoration algorithms. A potentially valuable side benefit of the approach is that it 
enables physically meaningful separation of the phases in different layers of the 
atmosphere. This opens up the possibility to restore images across a wide anisoplanatic 
field-of-view.  
As a final remark, we note that we have focused on the challenge of imaging through 
strong atmospheric turbulence. However, the techniques we have developed are equally 
suited to high dynamic range imaging at lower turbulence strengths. Here the emphasis is 
on accurately modeling the PSF structure out to large radial distances to capture the low 
amplitude speckle structure. This is essential to obtain restorations with high-dynamic 
range, and requires faithful estimation of the wave-front phases. Without this, the 
restored image will always have a faint “fog” which may mask any faint objects present 
in the image. 

	  
3.8 Compact multi-frame blind deconvolution (CMFBD) 
 
A second spectral ratio-based prior term, that enforces positivity on the estimates for the 
PSFs, is given by 
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where 

  
F −1 A{ } denotes the inverse Fourier transform of  A ,

  
M j ,k (u) is a similar mask to 

  Mkk ' (u)  and the summation over x is only over pixels with negative values. This prior has 
application only in the case when the user wants to perform “compact” MFBD 
(CMFBD), where the object and PSFs are explicitly modeled for a subset of the data 
frames ( K  “control” frames) but all the data frames ( N ) are used to leverage the 
restoration [15]. Such a case can occur when N is very large and the number of variables 
required to model all the data is impractical due the large dimensionality of the parameter 
hyperspace. This leads to inevitable entrapment in local minima during the optimization. 
In CMFBD the  J ( = N − K ) “non-control” frames still provide leverage on the restoration 
through this prior that demands that the PSFs for the non-control frames be positive. 
These PFSs are estimated via spectral ratios, and the PSF estimates for the control frames 
are modeled as a band-limited positive function. This prior provides a “hard” constraint 
for an object whose Fourier spectrum extends over the entire spatial frequency range 
sampled by the atmospheric OTFs (e.g. a star). But this is only a “soft” constraint for an 
object with a more compact Fourier spectrum that does not fully cover the OTF spectral 
extent.  Here “hard” means that the constraint can be enforced throughout the 
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optimization, while “soft” means the constraint can only be used to guide the restoration 
at the beginning of the optimization.   
 
We note that both spectral ratio-based priors (Eqns. 11 and 13) enforce the inherent 
temporal variations in the data that are due to the PSFs. Moreover, both priors can easily 
be extended to the case where we have additional data from more than one channel (e.g., 
phase diversity data or data from multiple apertures). In this case, we just duplicate the 
cost function terms for the additional channels. However, it is important to note that for 
the multi-channel scenario there are additional “cross-channel” spectral ratios, 

  Gk
l (u) / Gk '

l ' (u) , that can be used to bolster the PSF consistency prior that has been 
introduced above.  

We evaluate the performance of our CMFBD algorithm using real ground-based imagery 
of the SEASAT remote sensing satellite observed in the near infrared using the AMOS 
1.6m telescope on Haleakala (Maui) during daytime. We use   N = 271data frames with 
  K = 36 control frames. Examples of the data frames are shown in the upper two panels of 
Fig 15. Please refer to [15] for details of the modeling of the object and the PSFs, and the 
general implementation of CMFBD. On the lower left is a restoration using a 
conventional MFBD algorithm [2], while the lower right is the CMFBD restoration with 
the soft positivity constraint metric (the second spectral ratio-based prior term) held until 
the change in its value was less than 10% which occurred after about 80 iterations for this 
particular target.  The consistency metric was enforced for the entire minimization.  The 
main bar across the image represents the down-looking synthetic aperture radar antenna, 
and the two panels extending out represent the solar panels.  On comparing the two 
images, it is clearly noticeable that the solar panels are better defined and there is an 
obvious decrease in the number of artifacts in the CMFBD image.  

 

                                            
 
Figure 15. Top left: best data frame. Top Right: worst data frame. Bottom Left: Restoration using a 
conventional MFBD algorithm [5]. Bottom right: Restoration using the CMFBD algorithm. 
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3.9 Discussion 
 
As more and more data channels are used to provide additional constraints on the MFBD 
problem, the number of variables required to model all the data unfortunately exceeds 
practical levels. This happens both computationally due to memory limitations and 
mathematically, when the dimensionality of the parameter hyperspace becomes 
extremely large, leading to inevitable entrapment in local minima during the 
optimization.  Our results indicate that CMFBD offers a way to overcome this limitation. 
Additionally, it also provides a possibility for an extension of MFBD research to potential 
scenarios consisting of datasets that are orders of magnitude larger than those currently 
processed.   
	  
4. Summary 
 
During this award we have made significant progress in our understanding of the 
requirements for high-resolution imaging using the Air Force’s large aperture telescopes. 
We have come from a situation where the amount of information that could be recovered 
from imagery obtained through moderate-to-strong turbulence was minimal, to one where 
we can obtain high-resolution imagery under the same conditions. To aid the reader in 
assessing the magnitude of the advances, we have summarized them in chronological 
order in Figure 16. 
 

	  
Figure 16. This shows how our research in imaging through strong atmospheric turbulence (D/r0~40) 
progressed throughout the award. The advances came through progressively improving the synergy 
between the data acquisition and processing. Left panel: situation circa 2008, single telescope data using 
spectral nulls during the MFBD restoration process. Middle panel: situation circa 2010, single telescope 
data augmented with wave front sensor data processed using MFBD with a multilayer, frozen flow model 
for the observed wave fronts. Right panel: situation circa 2012, multiple telescope data augmented with 
wave front sensor data and processed using a multi-aperture phase retrieval approach. Note the “observed” 
data used for these restorations were generated using realistic numerical simulations with turbulence noise 
only.  
 
Figure 17 shows that the resolution of the restoration of the aperture diverse data acquired 
through D/r0~40 turbulence, is essentially diffraction limited.  
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Figure	   17.	   This	   plot	   shows	   the	   modulation	   transfer	   function	   (MTF)	   for	   diffraction-‐limited	  
observations	  (solid	  line)	  along	  with	  the	  effective	  MTF	  for	  a	  multi-‐aperture	  restoration	  (dotted	  line):	  
The	  multi-‐aperture	  restoration	  effectively	  has	  diffraction-‐limited	  resolution.	  
	  
This increase in performance translates into a significant advance in SSA capability that 
is best demonstrated by looking at the space-bandwidth product. To measure the 
efficiency of the imaging system we need to look at both the sky coverage and the 
fraction of time that observations can be made. This space-bandwidth product is given by  
 

SBP	  =	   2𝜋 1− (!!
!"#

!!!"#$
)!/!   𝑓(𝑟!!"#$

!
!!!"# : 𝑘)  𝑑𝑟!!"#$	  	  	  	   	   (14)	  

	  
where 𝑓(𝑟!!"!": 𝑘) is a 𝜒!! probability distribution for 𝑟!, 𝑟!!"#$ is the value of  𝑟! at zenith, 
and 𝑟!!"#    is the minimum value of  𝑟!  for which the imaging system can deliver 
diffraction-limited resolution. The distribution for the median daytime seeing at 
Haleakala, is best modeled using k=4. Figure 18 shows the corresponding space-
bandwidth product versus D/r0. For an imaging system with a performance ceiling of 
D/r0=20, the space-bandwidth product is 0.07. Increasing the performance ceiling to 
D/r0=40 improves the space-bandwidth product to 0.4.  That is, by using the techniques 
developed in this research we will improve daytime spatial and temporal coverage of the 
sky at Haleakala from 7% to 40%: a six-fold increase. A similar improvement can be 
expected at the Starfire Optical Range in New Mexico. 

	  

Figure 18. This plot shows the space-bandwidth product (cumulative probability) versus the imaging 
system’s performance ceiling for daytime observations at Haleakala. 
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Appendix: Details of Numerical Simulations used in §2.3 
 

Number of turbulence layers, N = 2 Type of turbulence: Kolmogorov 

Layer 1 Height, z1= 0m Speed, |v1| = 7.5m/s Direction = 180° r0=4.2cm 

Layer 2 Height, z2 = 11km Speed, |v2| = 30m/s Direction = 225° r0=7cm 

Focal plane sampling interval, Δt = 2ms WFS sampling interval, Δt = 2ms 
Number of sub-apertures = 30 x 30 WFS λ=0.6 µm with Δλ= 0.3 µm 

Telescope aperture, D = 3.6m Number of pixels across pupil, D = 240 

Observing wavelength, λ=0.94 µm with Δλ= 0.12 µm 
Single star (mv=6) Number of focal plane and WFS data frames, N = 10 

Focal plane flux: 3e5 photons/frame WFS flux: 1e3 photons/frame 
HST (mv=2.3) Number of focal plane and WFS data frames, N = 40 

Focal plane flux: 1e7 photons/frame WFS flux: 5e3 photons/frame 

	  
Table	  1.	  Parameters	  used	  for	  simulations.	  The	  combined	  effective	  r0	  at	  500	  nm	  is	  3.4	  cm	  (7.2	  cm	  at	  
940	  nm	  for	  D/r0=50) 


	rpt_date: 02-28-2014
	rpt_type: FINAL
	dates_cov: 01 March 2009 - 30 November 2013
	title: 
ADVANCING THE SURVEILLANCE CAPABILITIES OF THE AIR FORCE'S LARGE-APERATURE TELESCOPES


	ctr_no: 
	grant_no: FA9550-09-1-0216
	prog_elem: 
	proj_no: 
	task_no: 
	work_unit: 
	authors: 
STUART M. JEFFERIES
DOUGLAS A. HOPE
	perf_org: 
University of Hawaii
Office of Research Services
2425 Campus Road, Sinclair Library, Room 1
Honoloulu, Hawaii 96822
	perf_rptno: 
	spons_agcy: 
Air Force Office of Scientific Research
875 North Randolph Street
Suite 325, Room 3112
Arlington, VA. 22203
	acronyms:  AFOSR
	spons_rptno: 
	dist_stmt: 
No limitations on distribution/availability


	supp_notes: 
	abstract: Effective space situational awareness (SSA) requires horizon-to-horizon surveillance of the sky, twenty-four hours a day, seven days a week. In practice, the amount of sky over which high-resolution images of space objects can be obtained using the Air Force’s large aperture telescopes is limited to regions where the combination of adaptive optics (AO) compensation and numerical image restoration have good performance. For current AO systems and image processing techniques this is achieved for benign to moderate turbulence conditions. Improving the synergy between the data acquisition and processing steps, and leveraging the information on the temporal behavior of the atmosphere that is encoded in the AO wave front sensor data, extends the range of good performance. The proposed approach captures images using a range of aperture sizes and then uses a bootstrap restoration process that starts with the smallest aperture data. This technique provides a trajectory through the parameter hyperspace in the restoration that is less susceptible to entrapment in local minima than is encountered with the traditional approach of restoring single aperture data.  Implementing the proposed approach has the potential to more than double the spatial and temporal coverage of the sky: a significant advance for SSA.
	subj_terms: 
High-resolution imaging through strong atmospheric turbulence, Aperture Diversity, High-resolution wave front estimation, Space Situational Awareness
	rpt_class: U
	abstr_class: U
	page_class: U
	limit: UU
	pages: 25
	name_resp: STUART M. JEFFERIES
	phone_resp: 808-573-9520
	Reset: 


